

Functional pharmacology of cloned heterodimeric GABA_B receptors expressed in mammalian cells

*¹Hans Bräuner-Osborne & ¹Povl Krogsgaard-Larsen

¹NeuroScience PharmaBiotec Centre, Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark

1 In this study we report a new assay of heterodimeric γ -amino-butanoic acid subtype B (GABA_B) receptors where either GABA_BR1a or GABA_BR1b are co-expressed with GABA_BR2 and the chimeric G-protein G α q-z5 in tsA cells. In this manner we obtained a robust response to GABA_B agonists measured as increase in phosphoinositide hydrolysis.

2 We used this assay to characterize a number of commonly used GABA_B receptor ligands. Both splice variants displayed the same rank order of agonist potency; 3-aminopropyl(methyl)phosphinic acid (SKF-97541) > GABA > (R)-4-amino-3-(4-chlorophenyl)butanoic acid ((R)-baclofen) > (RS)-4-amino-3-(5-chloro-2-thienyl)butanoic acid (BCTG) > 3-aminopropylphosphonic acid (3-APPA) and furthermore, the absolute agonist potency values were very close to each other.

3 3-APPA was a partial agonist displaying maximal responses of 41 and 61% compared to GABA at GABA_BR1a and GABA_BR1b, respectively. The antagonist (RS)-3-amino-2-(4-chlorophenyl)-2-hydroxypropylsulphonic acid (2-OH-saclofen) displayed K_B values of 15 and 7.8 μ M at GABA_BR1a and GABA_BR1b, respectively.

4 The rank order of agonist potency as well as the absolute ligand potencies correspond very well with those previously reported in different tissues, and this study thus provides a functional assay of cloned GABA_B receptors which should be a valuable tool for further characterization of GABA_B ligands. Finally, we can conclude that the functional pharmacological profiles of the two GABA_BR1 splice variants are very similar.

Keywords: GABA_B receptors; GABA_BR1a; GABA_BR1b; GABA_BR2; heterodimeric receptors; SKF-97541; (R)-baclofen; (RS)-4-amino-3-(5-chloro-2-thienyl)butanoic acid; 3-APPA; 2-OH-saclofen

Abbreviations: 2-OH-saclofen, (RS)-3-amino-2-(4-chlorophenyl)-2-hydroxypropylsulphonic acid; 3-APPA, 3-aminopropylphosphonic acid; ATD, amino terminal domain; (R)-baclofen, (R)-4-amino-3-(4-chlorophenyl)butanoic acid; BCTG, (RS)-4-amino-3-(5-chloro-2-thienyl)butanoic acid; DMEM, Dulbecco's modified Eagle medium; IP, inositol phosphate; GABA, γ -amino-butanoic acid; PBS, phosphate buffered saline solution; SKF-97541, 3-aminopropyl(methyl)phosphinic acid

Introduction

γ -Aminobutanoic acid (GABA) is the major inhibitory amino acid in the central and peripheral nervous system. The physiological effects of GABA are mediated by ionotropic GABA_A receptors and metabotropic GABA_B receptors, the latter being coupled to the G α i class of G-proteins (Morishita *et al.*, 1990). The GABA_B receptor was first defined by its selective activation by the GABA analogue (R)-4-amino-3-(4-chlorophenyl)butanoic acid ((R)-baclofen) (Bowery *et al.*, 1980; Hill & Bowery, 1981) and more recently a number of selective and very potent antagonists have been developed (Bittiger *et al.*, 1993). Using one of these radiolabelled antagonists, two different splice variants of the GABA_B receptor (named GABA_BR1a and GABA_BR1b, respectively) were isolated by expression cloning (Kaupmann *et al.*, 1997) which led several groups to identify a second subunit (Jones *et al.*, 1998; White *et al.*, 1998; Kaupmann *et al.*, 1998a; Kuner *et al.*, 1999; Ng *et al.*, 1999a; Martin *et al.*, 1999). Interestingly, although some of these groups have reported functional responses from cells transfected with either GABA_BR1 or GABA_BR2 alone (Kaupmann *et al.*, 1997; 1998b; Kuner *et al.*, 1999; Martin *et al.*, 1999), several lines of evidence have shown that the two receptor subunits dimerize in order to form fully functional receptors with the expected pharmacological

responses by agonists (Jones *et al.*, 1998; White *et al.*, 1998; Kaupmann *et al.*, 1998a; Kuner *et al.*, 1999; Ng *et al.*, 1999b; Möhler & Fritschy, 1999). However, although transient expression functional assays are now available, the assays reported so far have either been limited by a low throughput or relatively weak responses. Thus, to this point only a couple of ligands have been characterized in functional assays based on heterodimeric cloned GABA_B receptors compared to a much larger number of compounds characterized in binding experiments (Kaupmann *et al.*, 1997; 1998a; Jones *et al.*, 1998; White *et al.*, 1998; Kuner *et al.*, 1999; Ng *et al.*, 1999b). In order to overcome these limitations on functional assays by designing a 'more sensitive and much-needed' functional assay system (Bettler *et al.*, 1998), we used a strategy of co-transfection of the receptors with the chimeric G-protein named G α q-z5 in which the five C-terminal aminoacids of G α q have been replaced by the C-terminus of G α z (a member of the G α i subgroup). In this manner, receptors coupled to the G α i class of G-proteins have previously been shown to mediate robust stimulative responses with the expected pharmacological profiles on e.g., monoamine receptors (Conklin *et al.*, 1993; Bräuner-Osborne & Brann, 1996) and metabotropic glutamate receptors (Gomeza *et al.*, 1996) and as shown in this paper a similar robust signal (generation of inositol phosphates) can be obtained from heterodimeric GABA_B receptors when these are co-transfected with G α q-z5.

*Author for correspondence; E-mail: hans@medchem.dfh.dk

As pointed out previously, two different splice variants of GABA_BR1 have been identified differing in the distal amino terminal part of the amino-terminal of the receptor. The two splice variants show distinct expression patterns and different developmental regulation, indicating that they could have different physiological functions (Kaupmann *et al.*, 1998b; Malitschek *et al.*, 1998). Since it has recently been shown that GABA binds to the amino terminal domain (ATD) of the receptor (Galvez *et al.*, 1999), it is tempting to speculate that the pharmacology of the splice variants could differ. So far, binding studies of the GABA_BR1 splice variants expressed alone (Kaupmann *et al.*, 1997; 1998b) or in the presence of GABA_BR2 (Kaupmann *et al.*, 1998a) have not revealed any such difference in binding affinity between the two splice variants. However, this does not rule out that the splice variants could differ in their pharmacological profiles in functional assays. Thus, in order to investigate this possibility we have also compared the pharmacology of a number of commonly used GABA_B ligands (Figure 1) on the two splice variants of GABA_BR1 co-expressed with GABA_BR2 and G α q-z5.

Methods

Cell culture and second messenger assay

tsA cells (a transformed HEK 293 cell line (Chahine *et al.*, 1994)) were maintained at 37°C in a humidified 5% CO₂ incubator in Dulbecco's modified Eagle medium (DMEM) supplemented with penicillin (100 U ml⁻¹), streptomycin

(100 mg ml⁻¹) and 10% foetal calf serum. Based on previously published protocols we decided to transfect the cells with a 5 fold excess of GABA_BR2 as compared to the GABA_BR1 splice variants (White *et al.*, 1998; Kaupmann *et al.*, 1998a). Two million cells were split into a 15 cm tissue culture plate and transfected with 1.4 μ g GABA_BR1a-pcDNA3.1 or GABA_BR1b-pcDNA3.1, 7 μ g GABA_BR2-pcDNA3.1 and 1.4 μ g G α q-z5-pcDNA the following day using SuperFect as a DNA carrier according to the protocol by the manufacturer (Qiagen, Hilden, Germany). In experiments where cells were only transfected with a subset of the plasmids, total DNA was maintained at the same level with empty pcDNA3 vector. The day after transfection, cells were split into two poly-D-lysine coated 24-well tissue culture plates in inositol-free growth medium containing 1 μ Ci ml⁻¹ myo-[2-³H]inositol (Amersham, Buckinghamshire, U.K.). Sixteen to twenty hours later, cells were washed with phosphate buffered saline solution (PBS) and incubated for 20 min in PBS containing 0.9 mM CaCl₂ and 1.05 mM MgCl₂ (PBS⁺⁺). Cells were then incubated for another 20 min in PBS⁺⁺ containing 10 mM LiCl (PBS⁺⁺-LiCl). Finally, after the cells had been incubated in PBS⁺⁺-LiCl for 40 min with the indicated amounts of agonists, reactions were terminated by ice-cold 10 mM formic acid and total inositol phosphate (IP) generation was determined by ion-exchange chromatography as described previously (Nanevics *et al.*, 1996). In the case of antagonist assays, cells were incubated in PBS⁺⁺ for 20 min then in PBS⁺⁺-LiCl containing antagonist for 20 min and finally in PBS⁺⁺-LiCl containing both antagonist and 5 μ M GABA for 40 min.

Materials

GABA and (R)-baclofen were obtained from Sigma (St. Louis, MO, U.S.A.). 3-Aminopropyl(methyl)phosphinic acid (SKF-97541), (RS)-4-amino-3-(5-chloro-2-thienyl)-butanoic acid (BCTG), 3-aminopropylphosphonic acid (3-APPA) and (RS)-3-amino-2-(4-chlorophenyl)-2-hydroxypropylsulphonic acid (2-OH-saclofen) were obtained from Tocris Cookson (Bristol, U.K.). Culture media, serum and antibiotics for cell culture were obtained from Life Technologies (Paisley, U.K.). The rat GABA_B receptor plasmids and the G α q-z5 construct were generous gifts from Dr Janet Clark (National Institute of Health, Bethesda, MD, U.S.A.) and Dr Bruce Conklin (University of California, San Francisco, CA, U.S.A.), respectively. The pcDNA3 vector was obtained from Stratagene (La Jolla, CA, U.S.A.). The tsA cells were a generous gift from Dr Penelope S.V. Jones (University of California, San Diego, CA, U.S.A.).

Data analysis

All experiments were performed in triplicate and the results are given as mean \pm s.e.mean of 3–5 experiments. Antagonist potencies were calculated from inhibition curves using the 'functional equivalent' of the Cheng-Prusoff equation $K_B = IC_{50}/(1 + ([A]/EC_{50}))$ (Craig, 1993), where [A] is the fixed agonist concentration.

Results

Initially, we tested whether it was necessary to express GABA_BR1, GABA_BR2 and G α q-z5 simultaneously in order to stimulate IP formation. As expected, cells transfected with GABA_BR1a and GABA_BR2 were unable to stimulate IP

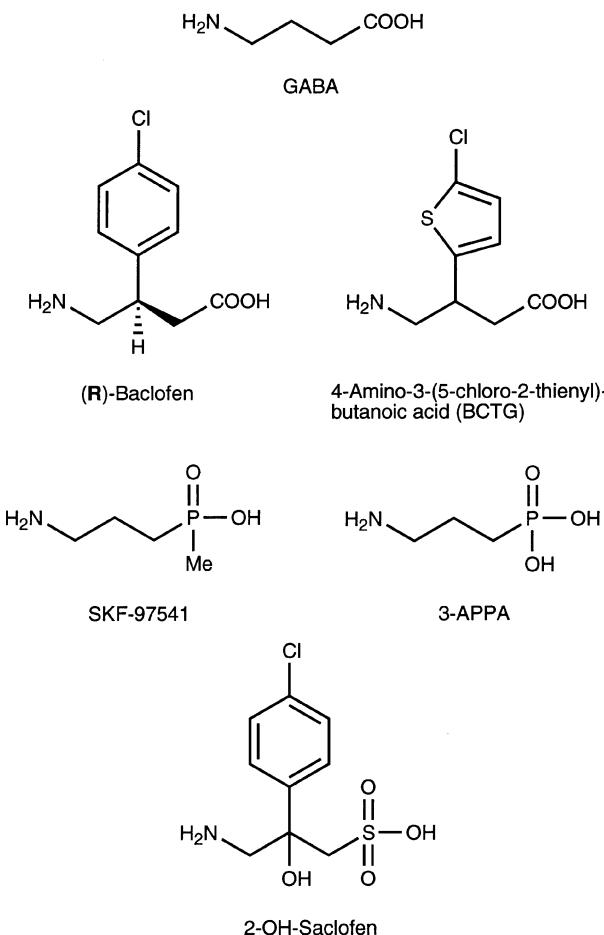
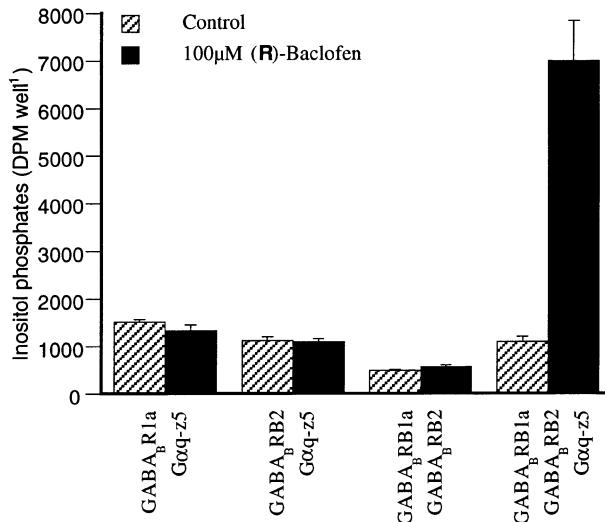
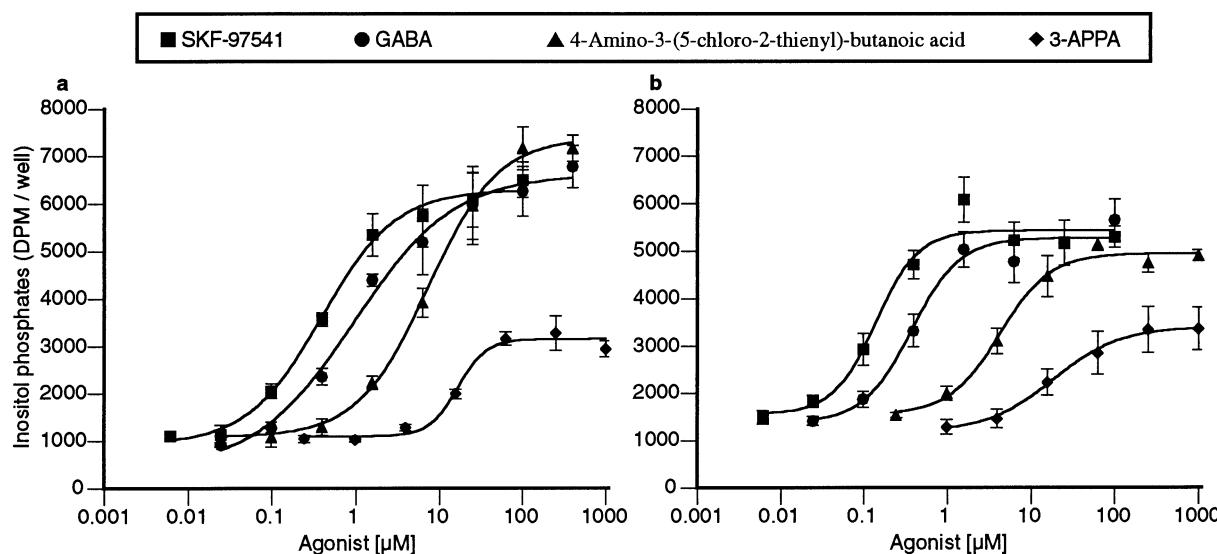



Figure 1 Structure of the GABA_B ligands used in this study.

formation when exposed to the agonist (**R**)-baclofen (Figure 2). In contrary, cells further co-transfected with G α q-z5 gave a robust response to the agonist as a 4–6 fold increase in IP formation. As seen in Figure 2, the monomeric GABA_BR1a or GABA_BR2 co-expressed with G α q-z5 were also unable to respond to the agonist. Thus, in conclusion GABA_BR1, GABA_BR2 and G α q-z5 all needed to be expressed in order to obtain a functional IP response. Cells transfected with G α q-z5 alone did also not show any increase in IP formation to (**R**)-

Figure 2 Generation of inositol phosphates by the GABA_B agonist (**R**)-baclofen in tsA cells transfected with varying subsets of the GABA_B receptor subunits and the chimeric G-protein G α q-z5. After a 20 min preincubation in phosphate-buffered saline containing 0.9 mM CaCl₂ and 1.05 mM MgCl₂ (PBS⁺⁺) cells were incubated for further 20 min in the same buffer containing 10 mM LiCl (PBS⁺⁺-LiCl). Finally, after the cells had been incubated in PBS⁺⁺-LiCl for 40 min in the absence or presence of 100 μ M (**R**)-baclofen, reactions were terminated by ice-cold 10 mM formic acid and total inositol phosphate generation was determined by ion-exchange chromatography. Data are the means \pm s.d. of representative experiments performed in triplicate.


baclofen or any of the other ligands used in this study (data not shown).

We then went on to test a series of commonly used GABA_B receptor ligands (shown in Figure 1) in greater detail on tsA cells transiently transfected with either GABA_BR1a, GABA_BR2 and G α q-z5 or GABA_BR1b, GABA_BR2 and G α q-z5. As can be seen on the examples of concentration-response curves shown in Figure 3 and the derived pEC₅₀ and pK_B values shown in Table 1, the pharmacological profiles of the two GABA_BR1 splice variants were almost identical. They both showed a similar rank order of agonist potency; SKF-97541 > GABA > (**R**)-baclofen > BCTG > 3-APPA. Interestingly, whereas SKF-97541, (**R**)-baclofen and BCTG were full agonists, 3-APPA was a partial agonist producing responses of 41 and 61% of a full GABA response on the GABA_BR1a and

Table 1 Agonist and antagonist potencies on heterodimeric GABA_BR1 / GABA_BR2 receptors in functional assay

Agonist	GABA _B R1a / R2/G α q-z5	GABA _B R1b / R2/G α q-z5
GABA	5.9 \pm 0.1	6.2 \pm 0.2
(R)-Baclofen	5.7 \pm 0.1	5.8 \pm 0.2
SKF-97541	6.4 \pm 0.1	6.5 \pm 0.2
3-APPA (% of maximal GABA response)	4.4 \pm 0.1 (41 \pm 5%)	4.4 \pm 0.2 (61 \pm 6%)
4-Amino-3-(5-chloro-2-thienyl)-butanoic acid (BCTG)	4.8 \pm 0.1	4.9 \pm 0.3
Antagonist		pK _B
2-OH-Saclofen		4.9 \pm 0.1
		5.1 \pm 0.1

tsA cells (a transformed HEK 293 cell line) were transiently transfected with GABA_BR1a or GABA_BR1b, GABA_BR2 and the chimeric G-protein G α q-z5. Functional responses were measured 2 days after transfection as total inositol phosphates generated during a 40 min exposure to ligand in the presence of 10 mM LiCl. In the case of antagonist assay, the cells were pre-incubated with antagonist for 20 min before the 40 min exposure to antagonist in the presence of 5 μ M GABA and 10 mM LiCl. Values are mean \pm s.e. mean of 3–5 independent experiments.

Figure 3 Concentration-response curves of some GABA_B receptor agonists at tsA cells transfected with GABA_BR1a, GABA_BR2 and G α q-z5 (a) or GABA_BR1b, GABA_BR2 and G α q-z5 (b). Cell treatment and measurement of total inositol phosphates generated was performed as described in Figure 2.

GABA_BR1b splice variants, respectively (Figure 3 and Table 1).

Discussion

The first goal of these studies was to develop a functional assay of cloned GABA_B receptors which could circumvent some of the limitations (e.g. low throughput and low signal) of previously reported assays (Kaupmann *et al.*, 1997; 1998a; Jones *et al.*, 1998; White *et al.*, 1998; Kuner *et al.*, 1999; Ng *et al.*, 1999b; Martin *et al.*, 1999) by using a strategy of cotransfection with the chimeric G-protein G α q-z5. We and others have previously used this strategy to obtain robust stimulative responses from receptors coupled to the G α i class of G-proteins on monoamine receptors (Conklin *et al.*, 1993; Bräuner-Osborne & Brann, 1996) and metabotropic glutamate receptors (Gomeza *et al.*, 1996), and in agreement with these results we obtained 4–6 fold increases in IP generation by agonist treatment of cells transfected with both subunits of the GABA_B receptor and the chimeric G-protein (Figures 2 and 3). In agreement with several groups, we were only able to detect agonist responses in cells transfected with both subunits of the GABA_B receptor (Jones *et al.*, 1998; White *et al.*, 1998; Kaupmann *et al.*, 1998a; Ng *et al.*, 1999b) whereas no response could be detected in cells transfected with either GABA_BR1/G α q-z5 or GABA_BR2/G α q-z5. Some groups have reported that weak functional responses can be obtained from cells transfected with either GABA_BR1 or GABA_BR2 alone (Kaupmann *et al.*, 1997; 1998b; Martin *et al.*, 1999; Kuner *et al.*, 1999), but most results point to the fact that both GABA_B receptor subunits have to be co-expressed in order to obtain the expected agonist potency and effector coupling (Jones *et al.*, 1998; White *et al.*, 1998; Kaupmann *et al.*, 1998a; Kuner *et al.*, 1999; Ng *et al.*, 1999b; Möhler & Fritschy, 1999). Our results are in agreement with these observations as correct coupling to G α q-z5 only occur when both GABA_B subunits are present.

In order to determine whether the GABA_B receptors were able to activate G α q-z5 in the same manner as the endogenous G-proteins, we tested a number of commonly used GABA_B ligands in greater detail. Furthermore, we also wanted to test whether the two GABA_BR1 splice variants differed in their functional pharmacological profile. First of all we found that both splice variants displayed very similar pharmacology when co-expressed with GABA_BR2 and G α q-z5. This is in agreement with binding studies on cells expressing either GABA_BR1a or GABA_BR1b alone or in the presence of GABA_BR2 which were also unable to detect any pharmacological difference between the two splice variants (Kaupmann *et al.*, 1997; 1998a,b; Malitschek *et al.*, 1998). Thus, the function of the splice variation in the distal part of the ATD is still unknown. As pointed out recently, it is also possible that the splice variants interact with different membrane anchoring proteins causing distinct localization at the subcellular level (Möhler &

Fritschy, 1999), but this remains to be proven by a different set of experiments than those presented in this study. The rank order of agonist potency was thus similar on both splice-variants; SKF-97541>GABA>(R)-baclofen>BCTG>3-APPA. Although, no previous study has looked at all these agonists simultaneously in functional experiments it can still be concluded that the rank order is in agreement with studies using tissue pharmacology or receptor binding. Thus, SKF-97541 has been reported to be more potent than baclofen (Knight & Bowery, 1996; Seabrook *et al.*, 1990), GABA has been reported to be more potent than baclofen (Berthelot *et al.*, 1991) which is more potent than BCTG (Berthelot *et al.*, 1991; Lacey *et al.*, 1993; Ong *et al.*, 1997), and 3-APPA has been shown to be less potent than baclofen (Luzzi *et al.*, 1986; Kerr *et al.*, 1987). The actual pEC₅₀ values of our study are also in agreement with those reported in tissues previously. Furthermore, 3-APPA has been shown to be a partial agonist in guinea-pig ileum where it both displayed agonist and antagonist actions (Luzzi *et al.*, 1986; Kerr *et al.*, 1987), which is in agreement with our findings of 3-APPA being a partial agonist. It should be noted that 3-APPA is a full agonist in the cat spinal cord (Kerr *et al.*, 1987). We have previously shown that the intrinsic activity of partial agonists is highly dependent on the expression levels of receptors and G-proteins (Bräuner-Osborne *et al.*, 1996) and this could explain why 3-APPA is a partial and full agonist in the ileum and spinal cord, respectively. We also tested the classical GABA_B competitive antagonist 2-OH-saclofen. As shown in Table 1, this compound could also not discriminate between the GABA_BR1a (pK_B=4.9) and GABA_BR1b (pK_B=5.1) splice variants. However, the potency of 2-OH-saclofen found in our assay is very similar to those found in tissue preparations such as the guinea-pig ileum (pA₂=5.0) (Kerr *et al.*, 1988).

In conclusion, we have reported a new method for functional testing of cloned heterodimeric GABA_B receptors expressed in mammalian cells. The results using the method are in very nice agreement with previously published results from tissue preparations and since the assay has a fairly high throughput and a robust signal, the assay seems to be superior to previously reported functional assays. We can also conclude that at least in our functional assay, we were unable to detect any significant difference between the two GABA_BR1 splice variants. This is in agreement with previous reports using binding assays (Kaupmann *et al.*, 1997; 1998a,b; Malitschek *et al.*, 1998) and the physiological significance of the splice variation in the amino-terminal thus remains a puzzle which warrants further experiments to solve.

References

BERTHELOT, P., VACCHER, C., FLOUQUET, N., DEBAERT, M., LUYCKX, M. & BRUNET, C. (1991). 3-Thienyl- and 3-furylaminobutyric acids. Synthesis and binding GABA_B receptor studies. *J. Med. Chem.*, **34**, 2557–2560.

BETTLER, B., KAUPMANN, K. & BOWERY, N. (1998). GABA_B receptors: drugs meet clones. *Curr. Opin. Neurobiol.*, **8**, 345–350.

BITTIGER, H., FROESTL, W., MICKEI, S.J. & OLPE, H.R. (1993). GABA_B receptor antagonists: from synthesis to therapeutic applications. *Trends Pharmacol. Sci.*, **14**, 391–394.

BOWERY, N.G., HILL, D.R., HUDSON, A.L., DOBLE, A., MIDDLEMISS, D.N., SHAW, J. & TURNBULL, M. (1980). (–)-Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. *Nature*, **283**, 92–94.

BRÄUNER-OSBORNE, H. & BRANN, M.R. (1996). Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): High throughput assays in mammalian cells. *Eur. J. Pharmacol.*, **295**, 93–102.

BRÄUNER-OSBORNE, H., EBERT, B., BRANN, M.R., FALCH, E. & KROGSGAARD-LARSEN, P. (1996). Functional partial agonism at cloned muscarinic acetylcholine receptors. *Eur. J. Pharmacol.*, **313**, 145–150.

CHAHINE, M., BENNETT, P.B., GEORGE JR, A.L. & HORN, R. (1994). Functional expression and properties of the human skeletal muscle sodium channel. *Pflügers. Arch.*, **427**, 136–142.

CONKLIN, B.R., FARFEL, Z., LUSTIG, K.D., JULIUS, D. & BOURNE, H.R. (1993). Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. *Nature*, **363**, 274–276.

CRAIG, D.A. (1993). The Cheng-Prusoff relationship: something lost in the translation. *Trends Pharmacol. Sci.*, **14**, 89–91.

GALVEZ, T., PARMENTIER, M.L., JOLY, C., MALITSCHKE, B., KAUPMANN, K., KUHN, R., BITTIGER, H., FROESTL, W., BETTLER, B. & PIN, J.P. (1999). Mutagenesis and modeling of the GABA_B receptor extracellular domain support a Venus flytrap mechanism for ligand binding. *J. Biol. Chem.*, **274**, 13362–13369.

GOMEZA, J., MARY, S., BRABET, I., PARMENTIER, M.L., RESTITUITO, S., BOCKAERT, J. & PIN, J.-P. (1996). Coupling of metabotropic glutamate receptors 2 and 4 to G α 15, G α 16, and chimeric G α q/i proteins: characterization of new antagonists. *Mol. Pharmacol.*, **50**, 923–930.

HILL, D.R. & BOWERY, N.G. (1981). 3 H-baclofen and 3 H-GABA bind to bicuculline-insensitive GABA_B sites in rat brain. *Nature*, **290**, 149–152.

JONES, K.A., BOROWSKY, B., TAMM, J.A., CRAIG, D.A., DURKIN, M.M., DAI, M., YAO, W.J., JOHNSON, M., GUNWALDSEN, C., HUANG, L.Y., TANG, C., SHEN, Q., SALON, J.A., MORSE, K., LAZ, T., SMITH, K.E., NAGARATHNAM, D., NOBLE, S.A., BRANCHEK, T.A. & GERALD, C. (1998). GABA_B receptors function as a heteromeric assembly of the subunits GABA_BR1 and GABA_BR2. *Nature*, **396**, 674–679.

KAUPMANN, K., HUGGEL, K., HEID, J., FLOR, P.J., BISCHOFF, S., MICKE, S.J., McMMASTER, G., ANGST, C., BITTIGER, H., FROESTL, W. & BETTLER, B. (1997). Expression cloning of GABA_B receptors uncovers similarity to metabotropic glutamate receptors. *Nature*, **386**, 239–246.

KAUPMANN, K., MALITSCHKE, B., SCHULER, V., HEID, J., FRÖSTL, W., BECK, P., MOSBACHER, J., BISCHOFF, S., KULIK, A., SHIGEMOTO, R., KARSCHIN, A. & BETTLER, B. (1998a). GABA_B-receptor subtypes assemble into functional heteromeric complexes. *Nature*, **396**, 683–687.

KAUPMANN, K., SCHULER, V., MOSBACHER, J., BISCHOFF, S., BITTIGER, H., HEID, J., FROESTL, W., LEONHARD, S., PFAFF, T., KARSCHIN, A. & BETTLER, B. (1998b). Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K⁺ channels. *Proc. Natl. Acad. Sci. U.S.A.*, **95**, 14991–14996.

KERR, D.I., ONG, J., JOHNSTON, G.A., ABBENANTE, J. & PRAGER, R.H. (1988). 2-Hydroxy-saclofen: an improved antagonist at central and peripheral GABA_B receptors. *Neurosci. Lett.*, **92**, 92–96.

KERR, D.I.B., ONG, J., PRAGER, R.H., GYNTHIER, B.D. & CURTIS, D.R. (1987). Phaclofen: a peripheral and central baclofen antagonist. *Brain Res.*, **405**, 150–154.

KNIGHT, A.R. & BOWERY, N.G. (1996). The pharmacology of adenylyl cyclase modulation by GABA_B receptors in rat brain slices. *Neuropharmacology*, **35**, 703–712.

KUNER, R., KÖHR, G., GRÜNEWALD, S., EISENHARDT, G., BACH, A. & KORNAU, H.-C. (1999). Role of heteromer formation in GABA_B receptor function. *Science*, **283**, 74–77.

LACEY, G., BERTHELOT, P., VACCHER, C., FLOUQUET, N., VACCHER, M.P., DEBAERT, M. & CURTIS, D.R. (1993). Thienyl-GABA derivatives as specific baclofen agonists in the rat and cat spinal cord in vivo. *Neurosci. Lett.*, **159**, 64–66.

LUZZI, S., FRANCHI-MICHELI, S., CIUFFI, M., PAJANI, A. & ZILLETTI, L. (1986). GABA-related activities of amino phosphonic acids on guinea-pig ileum longitudinal muscle. *J. Auton. Pharmacol.*, **6**, 163–169.

MALITSCHKE, B., RÜEGG, D., HEID, J., KAUPMANN, K., BITTIGER, H., FRÖSTL, W., BETTLER, B. & KUHN, R. (1998). Developmental changes of agonist affinity at GABA_BR1 receptor variants in rat brain. *Mol. Cell. Neurosci.*, **12**, 56–64.

MARTIN, S.C., RUSSEK, S.J. & FARB, D.H. (1999). Molecular identification of the human GABA_BR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABA_BR1. *Mol. Cell Neurosci.*, **13**, 180–191.

MORISHITA, R., KATO, K. & ASANO, T. (1990). GABA_B receptors couple to G proteins G α o, G α o* and G α i but not to G α i2. *FEBS Lett.*, **271**, 231–235.

MÖHLER, H. & FRITSCHY, J.-M. (1999). GABA_B receptors make it to the top—as dimers. *Trends Pharmacol. Sci.*, **20**, 87–89.

NANEVICS, T., WANG, L., CHEN, M., ISHII, M. & COUGHLIN, S.R. (1996). Thrombin receptor activating mutations. *J. Biol. Chem.*, **271**, 702–706.

NG, G.Y., MCDONALD, T., BONNERT, T., RIGBY, M., HEAVENS, R., WHITING, P., CHATEAUNEUF, A., COULOMBE, N., KARGMAN, S., CASKEY, T., EVANS, J., O'NEILL, G.P. & LIU, Q. (1999a). Cloning of a novel G-protein-coupled receptor GPR 51 resembling GABA_B receptors expressed predominantly in nervous tissues and mapped proximal to the hereditary sensory neuropathy type 1 locus on chromosome 9. *Genomics*, **56**, 288–295.

NG, G.Y.K., CLARK, J., COULOMBE, N., ETHEIR, N., HEBERT, T.E., SULLIVAN, R., KARGMAN, S., CHATEAUNEUF, A., TSUKAMOTO, N., MCDONALD, T., WHITING, P., MEZEY, E., JOHNSON, M.P., LIU, Q., KOLAKOWSKI, JR, L.F., EVANS, J.F., BONNER, T.I. & O'NEILL, G.P. (1999b). Identification of a GABA_B receptor subunit, gb2, required for functional GABA_B receptor activity. *J. Biol. Chem.*, **274**, 7607–7610.

ONG, J., KERR, D.I.B., VACCHER, C. & BERTHELOT, P. (1997). Actions of thienyl analogs of baclofen at GABA_B receptors in rat neocortical slices. *Eur. J. Pharmacol.*, **329**, 133–136.

SEABROOK, G.R., HOWSON, W. & LACEY, M.G. (1990). Electrophysiological characterization of potent agonists and antagonists at pre- and postsynaptic GABA_B receptors on neurones in rat brain slices. *Br. J. Pharmacol.*, **101**, 949–957.

WHITE, J.H., WISE, A., MAIN, M.J., GREEN, A., FRASER, N.J., DISNEY, G.H., BARNES, A.A., EMSON, P., FOORD, S.M. & MARSHALL, F.H. (1998). Heterodimerization is required for the formation of a functional GABA_B receptor. *Nature*, **396**, 679–682.

(Received June 21, 1999)

Revised August 25, 1999

Accepted September 2, 1999)